GMM nonparametric correction methods for logistic regression with error‐contaminated covariates and partially observed instrumental variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear and Nonparametric Regression and Instrumental Variables

We consider regression when the predictor is measured with error and an instrumental variable is available. The regression function can be modeled linearly, nonlinearly, or nonparametrically. Our major new result shows that the regression function and all parameters in the measurement error model are identified under relatively weak conditions, much weaker than previously known to imply identif...

متن کامل

How to Use SAS for GMM Logistic Regression Models for Longitudinal Data with Time-Dependent Covariates

In longitudinal data, it is important to account for the correlation due to repeated measures and timedependent covariates. Generalized method of moments can be used to estimate the coefficients in longitudinal data, although there are currently limited procedures in SAS ® to produce GMM estimates for correlated data. In a recent paper, Lalonde, Wilson, and Yin provided a GMM model for estimati...

متن کامل

Instrumental Variables Regression with Measurement Errors and Multicollinearity in Instruments

In this paper we obtain a consistent estimator when there exist some measurement errors and multicollinearity in the instrumental variables in a two stage least square estimation of parameters. We investigate the asymptotic distribution of the proposed estimator and discuss its properties using some theoretical proofs and a simulation study. A real numerical application is also provided for mor...

متن کامل

Partially Improper Gaussian Priors for Nonparametric Logistic Regression

A \partially improper" Gaussian prior is considered for Bayesian inference in logistic regression. This includes generalized smoothing spline priors that are used for nonparametric inference about the logit, and also priors that correspond to generalized random e ect models. Necessary and su cient conditions are given for the posterior to be a proper probability measure, and bounds are given fo...

متن کامل

Nonparametric Methods for Inference in the Presence of Instrumental Variables

We suggest two nonparametric approaches, based on kernel methods and orthogonal series to estimating regression functions in the presence of instrumental variables. For the first time in this class of problems, we derive optimal convergence rates, and show that they are attained by particular estimators. In the presence of instrumental variables the relation that identifies the regression funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scandinavian Journal of Statistics

سال: 2018

ISSN: 0303-6898,1467-9469

DOI: 10.1111/sjos.12364